CATEGORY 6 GLOBAL PROJECT RECORDS AND REFERENCES

— Records of Contribution from Three Decades of Fieldwork —

Serata Geomechanics Corporation
4160 Technology Drive • Fremont • California 94538 USA
Tel: (510) 659-8630 e-mail: serata@serata.com http://www.serata.com

Copyright 2005 Serata Geomechanics Corporation. All right reserved.
List of Major Projects Utilizing Serata Stress Technology (SST)

<table>
<thead>
<tr>
<th>Country/Organization</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td></td>
</tr>
<tr>
<td>Kembla Coal and Coke</td>
<td>Underground coal mine design and development</td>
</tr>
<tr>
<td>Woolongong, N.S. Wales</td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
</tr>
<tr>
<td>Potash Corp. of Saskatchewan (PCS)</td>
<td>Design and development of four deep potash mines at Allan, Cory, Lanigan and Rocanville.</td>
</tr>
<tr>
<td>Saskatoon, Saskatchewan</td>
<td></td>
</tr>
<tr>
<td>Sifto Canada, Inc.</td>
<td>Mine design & instrumentation for rehabilitation of old failing operation.</td>
</tr>
<tr>
<td>Goderich, Ontario</td>
<td></td>
</tr>
<tr>
<td>SOQUEM, Les Mines Seleine</td>
<td>Multiple-level salt mine design and development by eliminating surface subsidence.</td>
</tr>
<tr>
<td>Madeline Island, Quebec</td>
<td></td>
</tr>
<tr>
<td>Dow Chemical Canada</td>
<td>Solution mining design and analysis of large cavern field operation.</td>
</tr>
<tr>
<td>Edmonton, Alberta</td>
<td></td>
</tr>
<tr>
<td>International Minerals & Chemical</td>
<td>Potash mine design and development overcoming rapid ground failure by stress control.</td>
</tr>
<tr>
<td>Esterhazy, Saskatchewan</td>
<td></td>
</tr>
<tr>
<td>Potacan Mine, Ltd.</td>
<td>Stabilizing failing ground by introducing Stress Control method.</td>
</tr>
<tr>
<td>Tracy, New Brunswick</td>
<td></td>
</tr>
<tr>
<td>ENGLAND</td>
<td></td>
</tr>
<tr>
<td>Rio Tinto Zinc Corp.</td>
<td>Potash exploration & mining feasibility analysis of the deep potash deposit under North Sea.</td>
</tr>
<tr>
<td>London</td>
<td></td>
</tr>
<tr>
<td>Cleveland Potash, Ltd.</td>
<td>Development and design optimization of potash mining under the Yorkshire National Park.</td>
</tr>
<tr>
<td>Boulby, Yorkshire</td>
<td></td>
</tr>
<tr>
<td>INDIA</td>
<td></td>
</tr>
<tr>
<td>Central Mining Research Institute</td>
<td>Introducing Serata Stress Technology to the mining industry of India through the Institute.</td>
</tr>
<tr>
<td>Darnbad</td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td></td>
</tr>
<tr>
<td>Japan Railroad Construction Bureau</td>
<td>Ground measurement and analysis for Seikan Undersea Tunnel excavation.</td>
</tr>
<tr>
<td>Hokkaido</td>
<td></td>
</tr>
<tr>
<td>Chubu Power Company</td>
<td>Stress and property measurement and safety analysis for nuclear power plant foundation.</td>
</tr>
<tr>
<td>Hamaoka, Shizuoka</td>
<td></td>
</tr>
<tr>
<td>Shikoku Power Company</td>
<td>Stress measurement and analysis of foundation for nuclear power plant.</td>
</tr>
<tr>
<td>Ikata, Ehime</td>
<td></td>
</tr>
</tbody>
</table>
Ministry of Science & Technology, Japanese government
Automatic stress/property measurement for earthquake prediction.

Ministry of Land & Transportation, Tsukuba Research Center, Japanese government
Stress measurement in tunnel ground for digital optimization of earthwork.

Ministry of Economy & Industry, New Energy Development Bureau, Japanese government
Development of deepwell remote measurement system for Serata Probe.

NETHERLANDS

Royal Dutch Shell Oil Co.
Rotterdam
3-D material testing development for solution mining.

Akzo Zout Chemie
Hemgello
Underground cavern design for petrochemical waste storage.

UNITED STATES

Dow Chemical Company
Freeport, Texas
Cavern design and analysis for solution mining and underground storage of gas, oil and chemicals.

Bechtel Corporation
Carlsbad, NM
Nuclear waste disposal (WIPP) Design and safety analysis, accurately predicted the ground failure.

U.S. Department of Energy (ONWI/Battelle) Richmond, WA
Nuclear waste storage design and construction analysis.

Electric Power Research Institute (EPRI) McIntosh, Alabama
Design and construction of the world first compressed air energy storage cavern in the world.

Peabody Coal Company
St. Louis, MO
Digital optimization design and field adaptation for coal mining.

Jim Walter Resources
Somerset, CO
Digital optimization of deep coal mining.

Genwal Coal Company
Huntington, Utah
Design optimization of multiple-level coal mining.

Solution Mining Research Institute
Encinitas, LA
Digital optimization analysis and design of solution caverns and safe operation.

Louisiana Offshore Oil Port
New Orleans, LA
Design of solution cavern field for large scale oil storage.

Shell Oil Company
Houston, Texas
Solution cavern design and analysis in offshore oil storage.

Trans Continental Gas Pipeline Co.
St. Louis, MO
Gas storage cavern analysis and design and safety assurance.
6-2 PUBLICATION LIST ON SERATA STRESS TECHNOLOGY

1. Double-Fracture Method
 “Double-Fracture Method of In Situ Stress Measurement in Brittle Rocks”
 Author: Shosei Serata
 Significance: Detail explanation on invention of the method

2. Serata Probe Testing for Japanese Government Program
 “Investigation on a New Dry Single-Fracture Method of In-Situ Stress Measurement”
 Authors: T. Ishida, Y. Mizuta, and Y. Nakayama
 Source: Rock Stress Symposium, Kumamoto 2003
 Significance: Laboratory validation of Serata Probe in the Japanese government program

 “Development and Application of Load Test Equipment for 1,000 m Deep Borehole”
 Authors: N. Tsuda, T. Yoshimura, and T. Hatano
 Significance: Field validation of the remote operating system down to 1,000 m depth

4. Serata Stress Technology (SST) Software (I)
 “Formulation of Constitutive Equation for Salt”
 Authors: Shosei Serata, Kittitep Fuenkajorn
 Publishers, B.V., Amsterdam
 Significance: Basic concept of FEM modeling of structures in complex ground.

5. Serata Stress Technology (SST) Software (II)
 “Numerical Simulation of Strain-Softening and Dilation of Rock Salt”
 Authors: Kittitep Fuenkajorn and Shosei Serata
 Source: International Journal of Rock Mechanics and Mining Science,
 Supplemental Issue of 34th US Symposium on Rock Mechanics,
 University of Wisconsin, 1993
 Significance: Computer modeling of ground failure by aging.

6. Mine Application Example
 “Long-Term Evaluation of Stress Control Method of Underground Mining at Sifto Salt Mine”
 Authors: Donald Dickie & Shosei Serata
 Source: Journal of Mining Engineering, January 1993
 Significance: Demonstrating how to convert a failing mine to supreme producer

7. Coal Mine Application
 “Stress Control Method applied to Stabilization of Underground Coal Mine Openings”
 Authors: Serata, S., Carr, F. and Marin, E
 Source: Proc. 25th U.S. Symposium on Rock Mechanics, Northwestern University, 1984, pp 583~590
 Significance: Successful application of stress control method to deep coal mining
8. Application to hard Rock Mining
“In-Situ Stress Measurements in Stratified Hard rock Formation”
Authors: Shrinivasan, K. and Serata, S.
Source: 26th U.S. Symposium on Rock Mechanics, Rapid City, South Dakota, 1985
Pp 1227~1234
Significance: Demonstrating stress control in hard rock mining

9. Application to Long-Wall Mining of Coal
“Recent Advancement of Stress control Method”
Authors: Serata, S., Fuenkajorn, K.
Source: Proceeding of International Conference on Long-Wall, Pittsburgh, PA. 1991,
pp 265~283
Significance: Application of stress control to long-wall mining.

10. Numerical Analysis based on Stress Measurement
“Numerical Solution of Strain softening and Dilation of Rock Salt”
Authors: Fuenkajorn, K., and Serata, S.
Issue of 34th Symposium on Rock Mechanics, University of Wisconsin, 1993
Significance: Numerical optimization of salt mining by stress control.

11. In-Situ Stress Measurement
“Development of In-Situ Stress State Measurement Method using Single-Fracture
Method”
Authors: Uno, H., Katayama, I., Shingu, K., Serata, S. and Aoki, K.
Source: Proceedings of the Japan Symposium on Rock Mechanics, 10, 1998
pp 659~664
Significance: Invention of force balance principle for stress measurement.